A Comparison of Human, Automatic and Collaborative Music Genre Classification and User Centric Evaluation of Genre Classification Systems
نویسندگان
چکیده
In this paper two sets of evaluation experiments are conducted. First, we compare state-of-the-art automatic music genre classification algorithms to human performance on the same dataset, via a listening experiment. This will show that the improvements of contentbased systems over the last years have reduced the gap between automatic and human classification performance, but could not yet close this gap. As an important extension to previous work in this context, we will also compare the automatic and human classification performance to a collaborative approach. Second, we propose two evaluation metrics, called user scores, that are based on the votes of the participants of the listening experiment. This user centric evaluation approach allows to get rid of predefined ground truth annotations and allows to account for the ambiguous human perception of musical genre. To take genre ambiguities into account is an important advantage with respect to the evaluation of content-based systems, especially since the dataset compiled in this work (both the audio files and collected votes) are publicly available.
منابع مشابه
شناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملMusical genre classification of audio signals
Musical genres are categorical labels created by humans to characterize pieces of music. A musical genre is characterized by the common characteristics shared by its members. These characteristics typically are related to the instrumentation, rhythmic structure, and harmonic content of the music. Genre hierarchies are commonly used to structure the large collections of music available on the We...
متن کاملMusic Genre Classification Revisited: An In-Depth Examination Guided by Music Experts
Despite their many identified shortcomings, music genres are still often used as ground truth and as a proxy for music similarity. In this work we therefore take another in-depth look at genre classification, this time with the help of music experts. In comparison to existing work, we aim at including the viewpoint of different stakeholders to investigate whether musicians and end-user music ta...
متن کاملMarsyas and Rhythm Patterns: Evaluation of two music genre classification systems
Within the last years several technologies for automatic genreor content-based music classification have been developed. Two of them are the Rhythm Patterns, which were developed by Andreas Rauber et al. within the SOMeJB system, and the MARSYAS system by George Tzanetakis. While delivering promising results, none of them can at present be regarded as perfect. This paper describes the evaluatio...
متن کاملA Study on Music Genre Recognition and Classification Techniques
Automatic classification of music genre is widely studied topic in music information retrieval (MIR) as it is an efficient method to structure and organize the large numbers of music files available on the Internet. Generally, the genre classification process of music has two main steps: feature extraction and classification. The first step obtains audio signal information, while the second one...
متن کامل